M1.(a) 2,2,4-trimethylpentane
(b) 5
(c) $\mathrm{C}_{20} \mathrm{H}_{42} \longrightarrow \mathrm{C}_{8} \mathrm{H}_{18}+2 \mathrm{C}_{3} \mathrm{H}_{6}+3 \mathrm{C}_{2} \mathrm{H}_{4}$
(d) Mainly alkenes formed
(e) 4 (monochloro isomers)

(f)

(g) $\quad \mathrm{C}_{8} \mathrm{H}_{17}{ }^{35} \mathrm{Cl}=96.0+17.0+35.0=148.0$ and $\mathrm{C}_{8} \mathrm{H}_{17}{ }^{37} \mathrm{Cl}=96.0+17.0+37.0=150.0$

Both required

$$
\left.\left.M_{\mathrm{r}} \text { of this } \mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Cl} \frac{(1.5}{2.5} \times 148.0\right)+\frac{(1.0}{2.5} \times 150.0\right)=148.8
$$

(h) $\frac{24.6}{12} \quad \frac{2.56}{1} \quad \frac{72.8}{35.5}=2.05: 2.56: 2.05$

$$
\begin{aligned}
& \text { Simplest ratio }=\frac{2.05}{2.05}: \frac{2.56}{2.05}: \frac{2.05}{2.05} \\
& = \\
& 1: 1.25: 1
\end{aligned}
$$

Whole number ratio $(\times 4)=4: 5: 4$

M2.(a) (i) $1.6734 \times 10^{-24}(\mathrm{~g})$
Only.
$1.6734 \times 10^{-27} \mathrm{~kg}$
Not $1.67 \times 10^{-24}(\mathrm{~g})$.
(ii) B
(b) (i) $\frac{10 x+11 y}{x+y}=10.8$

OR ratio 10:11 = 1:4 OR 20:80 etc
Allow idea that there are 5×0.2 divisions between 10 and 11.
abundance of ${ }^{10} \mathrm{~B}$ is $\underline{20}(\%)$

OR

$$
\frac{10 x}{100}+\frac{11(100-x)}{100}=10.8
$$

$10 x+1100-11 x=1080$
$\therefore \mathrm{x}=1100-1080=20 \%$
Correct answer scores M1 and M2.
(ii) Same number of electrons (in outer shell or orbital)

Ignore electrons determine chemical properties.
Same electronic configuration / arrangement Ignore protons unless wrong.
(c) Range between 3500 and $10000 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(e) Electron being removed from a positive ion (therefore needs more energy) / electron being removed is closer to the nucleus

Must imply removal of an electron.
Allow electron removed from a + particle / species or from a 2+ion.
Not electron removed from a higher / lower energy level / shell.
Not electron removed from a higher energy sub-level / orbital.
Ignore electron removed from a lower energy sub-level / orbital.
Ignore 'more protons than electrons'.
Not 'greater nuclear charge'.

Ignore 'greater effective nuclear charge'.
Ignore shielding.

M3.(a) $\quad \mathrm{pV}=\mathrm{nRT}$
Do not penalise incorrect use of capitals / lower case letters. Accept correct rearrangement of equation.
(b) $\quad 2 \mathrm{C}_{4} \mathrm{H}_{10}+\mathbf{5 O}_{2} \rightarrow \mathbf{4 \mathrm { CH } _ { 3 } \mathrm { COOH } + 2 \mathrm { H } _ { 2 } \mathrm { O }}$

Accept any correct combination of multiples, including fractions.
(c) 23.0 g ethanol produces 30.0 g ethanoic acid
15.1\% (4.54 $\times 100 / 30$)

Do not penalise precision.
15.1\% scores 2 marks.

Accept consequential answer on wrong mass of ethanoic acid for second mark only.

M4.(a) Average / mean mass of 1 atom (of an element)
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
If moles and atoms mixed, $\max =1$

Mark top and bottom line independently.
All key terms must be present for each mark.

OR
Average / mean mass of atoms of an element
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
Average / mean mass of atoms of an element $\times 12$ mass of one atom of ${ }^{12} \mathrm{C}$

OR
(Average) mass of one mole of atoms
$1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$
OR
(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
Average mass of an atom / isotope (compared to C-12) on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12

This expression $=2$ marks.
(b)

$$
\frac{(70 \times 3)+(72 \times 4)+73+(74 \times 5)}{13}=\frac{941}{13}
$$

$=\underline{72.4}$
72.4 only
(e) Electron(s) transferred / flow (at the detector)

M1 must refer to electron flow at the detector.
If M1 incorrect $C E=0 / 2$
(From detector / plate) to the (+) ion
Do not allow from a charged plate.
(f) They do not have the same electron configuration / they have different number of electrons (in the outer shell)

Ignore electrons determine the properties of an atom.
Ignore they are different elements or different number of protons.

M5. (a) Average/mean mass of (1) atom(s) (of an element)

1/12 mass of one atom of ${ }^{12} \mathrm{C}$
Accept answer in words
Can have top line $\times 12$ instead of bottom line $\div 12$

OR
(Average) mass of one mole of atoms
$1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$
OR
(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
Average mass of an atom/isotope compared to C-12
on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12

$$
\begin{aligned}
& \frac{(95.12 \times 14)+(4.88 \times 15)}{100} \\
& \quad \text { Allow } 95.12+4.88 \text { instead of } 100
\end{aligned}
$$

$=14.05$
If not to 2 d.p. then lose last mark
Not 14.04
(b) ${ }^{15} \mathrm{~N}$ is heavier $/{ }^{15} \mathrm{~N}$ has a bigger $\mathrm{m} / \mathrm{z} /$ different m / z values

Not different no's of neutrons
Not ionisation potential

Electromagnet/electric field/magnet/accelerating potential or voltage/electric current
(c) No difference

Same no of electrons (in outer orbital/shell/sub shell)/same electron configuration

M2 dependent on M1
Not just electrons determine chemical properties Ignore protons

M6.(a) (i) Two rings only around nitrogen or sulfur
Lose this mark if more than 2 atoms are ringed.
Do not allow two atoms at the same end of the ion.
(ii) 275.8

Accept this answer only. Do not allow 276
(iii) Carboxylate / COO^{-}

Allow salt of carboxylic acid or just carboxylic acid.
(b) $\quad(32.1 / 102.1)=31.4 \%$

Do not penalise precision but do not allow 1 significant figure.
(c) Zineb is mixed with a solvent / water Max=2 if M1 missed

Use of column / paper / TLC
Lose M1 and M2 for GLC

Appropriate collection of the ETU fraction OR Appropriate method of detecting ETU

Allow ETU is an early fraction in a column or collecting a range of samples over time, lowest retention time / travels furthest on paper or TLC (allow 1 mark for having the longest retention time in GLC).

Method of identification of ETU (by comparison with standard using chromatography)

If method completely inappropriate, only M1 is accessible

